Electricity Load Forecasting Using LSTM for Household Usage
Author:
Publisher
Springer Nature Singapore
Link
https://link.springer.com/content/pdf/10.1007/978-981-97-1488-9_3
Reference12 articles.
1. Zheng J, Xu C, Zhang Z, Li X (2017) Electric load forecasting in smart grids using Long-Short-Term-Memory based Recurrent Neural Network. In: 2017 51st Annual conference on information sciences and systems (CISS), Baltimore, MD, USA, pp 1–6. https://doi.org/10.1109/CISS.2017.7926112
2. Yu Y, Fan J, Wang Z, Zhu Z, Xu Y (2023) A dynamic ensemble method for residential short-term load forecasting. Alexandria Eng J 63:75–88. ISSN 1110-0168, https://doi.org/10.1016/j.aej.2022.07.050
3. Yildiz B, Bilbao JI, Sproul AB (2017) A review and analysis of regression and machine learning models on commercial building electricity load forecasting. Renew Sustain Energ Rev 73:1104–1122. ISSN 1364-0321, https://doi.org/10.1016/j.rser.2017.02.023
4. Chen Z, Zhang D, Jiang H et al (2021) Load forecasting based on LSTM neural network and applicable to loads of “replacement of coal with electricity.” J Electr Eng Technol 16:2333–2342. https://doi.org/10.1007/s42835-021-00768-8
5. Hossain MS, Mahmood H (2020) Short-term load forecasting using an LSTM neural network. In: 2020 IEEE power and energy conference at Illinois (PECI), Champaign, IL, USA, pp 1–6. https://doi.org/10.1109/PECI48348.2020.9064654
1.学者识别学者识别
2.学术分析学术分析
3.人才评估人才评估
"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370
www.globalauthorid.com
TOP
Copyright © 2019-2024 北京同舟云网络信息技术有限公司 京公网安备11010802033243号 京ICP备18003416号-3