Author:
Yadav Kusum,Gupta Sunil,Gupta Neetu,Gupta Sohan Lal,Khandelwal Girraj
Reference17 articles.
1. Wang, X., Jiao, Y., Fei, S.: Estimation of clusters number and initial centers of K-means algorithm using watershed method. In: 2015 14th International Symposium on Distributed Computing and Applications for Business Engineering and Science
2. Blum, C., Sampels, M.: Ant colony optimization for FOP shop scheduling: a case study on different pheromone representations. In: Proceedings of the 2002 Congress on Evolutionary Computation (CEC’02), vol. 2, pp. 1558–1563. IEEE Computer Society Press, Los Alamitos, CA (2002)
3. Zhang, Y., Xu, X., Liu, Y., Li, X., Ye, Y.: An agglomerative fuzzy K-means approach to building decision cluster classifiers. In: 2011 Second International Conference on Innovations in Bio-inspired Computing and Applications
4. Qi, J., Yu, Y., Wang, L., Liu, J.: K-means: an effective and efficient K-means clustering algorithm. In: 2016 IEEE International Conferences on Big Data and Cloud Computing (BDCloud), Social Computing and Networking, (SocialCom), Sustainable Computing and Communications (SustainCom)
5. Kane, A., Determining the number of clusters for a K-means clustering algortihm. Indian J. Comput. Sci. Eng. (IJCSE)
Cited by
3 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献