1. Lam, H., & Yeung, D. (2007). A learning approach to spam detection based on social networks. In Fourth Conference on Email and Anti-Spam (CEAS-2007).
2. Saini, J. R., & Desai, A. A. (2009). Self Learning Taxonomical Classification System using Vector Space Document Analysis Model for Web Text Mining in UBE, PhD Thesis accepted by Department of Computer Science. Surat, India: Veer Narmad South Gujarat University.
3. Isacenkova, J., Thonnard, O., Costin, A. et al. (2014). Inside the scam jungle: a closer look at 419 scam email operations. EURASIP Journal on Information Security, 4. https://doi.org/10.1186/1687-417X-2014-4.
4. Newman, L. H. (2020). Nigerian email scammers are more effective than ever. https://www.wired.com/story/nigerian-email-scammers-more-effective-than-ever/. Last accessed 02 Apr 2020.
5. Uemura, T., Ikeda, D., & Arimura, H. (2008). Unsupervised spam detection by document complexity estimation. In: J. F. Jean-Fran, M. R. Berthold & T. Horváth (Eds.), Discovery science. DS 2008. Lecture notes in computer science, (Vol 5255). Berlin, Heidelberg: Springer.