Data-Driven Predictive Maintenance in Evolving Environments: A Comparison Between Machine Learning and Deep Learning for Novelty Detection
Author:
Publisher
Springer Singapore
Link
https://link.springer.com/content/pdf/10.1007/978-981-16-6128-0_11
Reference17 articles.
1. Ayvaz, S., Alpay, K.: Predictive maintenance system for production lines in manufacturing: a machine learning approach Using IoT data in real-time. Expert Syst. Appl. 173, 114598 (2020)
2. Cakir, M., Guvenc, M.A., Mistikoglu, S.: The experimental application of popular machine learning algorithms on predictive maintenance and the design of IIoT based condition monitoring system. Comput. Ind. Eng. 151, 106948 (2021)
3. Jardine, A.K.S., Lin, D., Banjevic, D.: A review on machinery diagnostics and prognostics implementing condition-based maintenance. Mech. Syst. Signal Process. 7(20), 1483–1510 (2006)
4. Çinar, Z.M., Nuhu, A.A., Zeeshan, Q., Korhan, O., Asmael, M., Safaei, B.: Machine learning in predictive maintenance towards sustainable smart manufacturing in Industry 4.0. Sustain 12(19), 8211 (2020)
5. Hu, Y., Baraldi, P., Di Maio, F., Zio, E.: A systematic semi-supervised self-adaptable fault diagnostics approach in an evolving environment. Mech. Syst. Signal Process. 88, 413–427 (2017)
Cited by 6 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献
1. Review on deep learning classifiers for faults diagnosis of rotating industrial machinery;Service Oriented Computing and Applications;2024-07-29
2. Artificial Intelligence for Predictive Maintenance Applications: Key Components, Trustworthiness, and Future Trends;Applied Sciences;2024-01-20
3. Novelty Detection and Fault Diagnosis Method for Bearing Faults Based on the Hybrid Deep Autoencoder Network;Electronics;2023-06-26
4. Novelty Detection of a Rolling Bearing using Long Short-Term Memory Autoencoder;2022 37th International Technical Conference on Circuits/Systems, Computers and Communications (ITC-CSCC);2022-07-05
5. Novelty Detection with Autoencoders for System Health Monitoring in Industrial Environments;Applied Sciences;2022-05-13
1.学者识别学者识别
2.学术分析学术分析
3.人才评估人才评估
"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370
www.globalauthorid.com
TOP
Copyright © 2019-2024 北京同舟云网络信息技术有限公司 京公网安备11010802033243号 京ICP备18003416号-3