Author:
Utami Moegi,Hoshino Yukinobu,Rathnayake Namal
Publisher
Springer Nature Singapore
Reference9 articles.
1. Gomez-Pulido, J.A., Vega-Rodriguez, M.A., Sanchez-Perez, J.M., et al.: Accelerating floating-point fitness functions in evolutionary algorithms: a FPGA-CPU-GPU performance comparison. Genet. Program Evolvable Mach. 12, 403–427 (2011)
2. Takagi, T., Sugeno, M.: Fuzzy identification of systems and its applications to modeling and control. IEEE Trans. Syst. Man Cybern. SMC-15(1), 116–132 (1985)
3. Jang, J.S.: ANFIS: adaptive-network-based fuzzy inference system. IEEE Trans. Syst. Man Cybern. 23(3), 665–685 (1993)
4. Shirazi, N., Walters, A., Athanas, P.: Quantitative analysis of floating point arithmetic on FPGA based custom computing machines. In: Proceedings IEEE Symposium on FPGAs for Custom Computing Machines, pp. 155–162. IEEE (1995)
5. Kim, H., Choi, K.I.: A pipelined non-deterministic finite automaton-based string matching scheme using merged state transitions in an FPGA. PloS one 11(10), e0163535 (2016)