Nonlinear State Estimation Using Adaptive Gaussian Filters with One-Step Randomly Delayed Measurements
-
Published:2021-08-03
Issue:
Volume:
Page:203-220
-
ISSN:2190-3018
-
Container-title:Smart Innovation, Systems and Technologies
-
language:
-
Short-container-title:
Author:
Mannarayana Poluri SriORCID, Dey AritroORCID
Publisher
Springer Singapore
Reference32 articles.
1. Kalman, R.E.: A new approach to linear filtering and prediction problems. J. Basic Eng. 82(1), 35–45 (1960) 2. Song, Y., Nuske, S., Scherer, S.: A multi-sensor fusion MAV state estimation from long-range stereo, IMU, GPS and Barometric Sensors. Sensors 17(1), 11 (2017) 3. Mu, X., Chen, J., Zhou, Z., Leng, Z., Fan, L.: Accurate initial state estimation in a monocular visual-inertial SLAM system. Sensors 18(2), 506 (2018) 4. Yu, Q., Xiong, R., Lin, C., Shen, W., Deng, J.: Lithium-ion battery parameters and state-of-charge joint estimation based on H-infinity and unscented Kalman filters. IEEE Trans. Veh. Technol. 66(10), 8693–8701 (2017) 5. Chen, T., Yse, F., Ling, K.V., Chen, X.: Distributed state estimation using a modified partitioned moving horizon strategy for power systems. Sensors 17(10), 2310 (2017)
|
|