Author:
An Ying,Bai Yaqi,Liu Yuan,Guo Lin,Chen Xianlai
Publisher
Springer Nature Singapore
Reference21 articles.
1. Chen, Q., Li, M., Chen, C., Zhou, P., Lv, X., Chen, C.: MDFNet: application of multimodal fusion method based on skin image and clinical data to skin cancer classification. J. Cancer Res. Clin. Oncol. 149(7), 3287–3299 (2023)
2. Steyaert, S., et al.: Multimodal data fusion for cancer biomarker discovery with deep learning. Nat. Mach. Intell. 5(4), 351–362 (2023)
3. Khader, F., et al.: Multimodal deep learning for integrating chest radiographs and clinical parameters: a case for transformers. Radiology 309(1), e230806 (2023)
4. Rahim, N., El-Sappagh, S., Ali, S., Muhammad, K., Del Ser, J., Abuhmed, T.: Prediction of Alzheimer’s progression based on multimodal deep-learning-based fusion and visual explainability of time-series data. Inf. Fusion 92, 363–388 (2023)
5. McMahan, B., Moore, E., Ramage, D., Hampson, S., y Arcas, B.A.: Communication-efficient learning of deep networks from decentralized data. In: Artificial Intelligence and Statistics, pp. 1273–1282. PMLR (2017)