1. Hai, T., Zhou, J., Li, N., Jain, S.K., Agrawal, S., Dhaou, I.B.: Cloud-based bug tracking software defects analysis using deep learning. J. Cloud Comput. 11(1), 1–14 (2022)
2. Hai, T., Alsharif, S., Dhahad, H.A., Attia, E.A., Shamseldin, M.A., Ahmed, A.N.: The evolutionary artificial intelligence-based algorithm to find the minimum GHG emission via the integrated energy system using the MSW as fuel in a waste heat recovery plant. Sustain. Energy Technol. Assess. 53, 102531 (2022)
3. Mcmahan, B., Moore, E., Ramage, D., et al.: Communication-efficient learning of deep networks from decentralized data. In: Proceedings of the 20th International Conference on Artificial Intelligence and Statistics, Fort Lauderdale, USA, pp. 1273−1282 (2017)
4. Wang, H., Yurochkin, M., Sun, Y., Papailiopoulos, D., Khazaeni, Y.: Federated learning with matched averaging. arXiv preprint arXiv:2002.06440 (2020)
5. Kopparapu, K., Lin, E., Zhao, J.: FedCD: improving performance in non-IID federated learning. arXiv preprint arXiv:2006.09637 (2020)