Author:
Wang Hao,Wang Ye,Gu Zhaoquan,Jia Yan
Publisher
Springer Nature Singapore
Reference24 articles.
1. Anderson, B., McGrew, D.A.: Identifying encrypted malware traffic with contextual flow data. In: Proceedings of the 2016 ACM Workshop on Artificial Intelligence and Security (2016). https://api.semanticscholar.org/CorpusID:15628796
2. Barradas, D., Santos, N., Rodrigues, L., Signorello, S., Ramos, F.M.V., Madeira, A.: FlowLens: enabling efficient flow classification for ML-based network security applications. In: Proceedings 2021 Network and Distributed System Security Symposium. Internet Society, Virtual (2021). https://doi.org/10.14722/ndss.2021.24067
3. Bhatia, S., Jain, A., Li, P., Kumar, R., Hooi, B.: MStream: fast anomaly detection in multi-aspect streams. In: Proceedings of the Web Conference 2021, pp. 3371–3382. ACM, Ljubljana Slovenia, April 2021. https://dl.acm.org/doi/10.1145/3442381.3450023
4. Caville, E., Lo, W.W., Layeghy, S., Portmann, M.: Anomal-E: a self-supervised network intrusion detection system based on graph neural networks. Knowl.-Based Syst. 258, 110030 (2022). https://doi.org/10.1016/j.knosys.2022.110030
5. Chang, L., Branco, P.: Graph-based Solutions with Residuals for Intrusion Detection: the Modified E-GraphSAGE and E-ResGAT Algorithms, November 2021. http://arxiv.org/abs/2111.13597