1. Abu-Libdeh, H., Altinbüken, D., Beutel, A., et al.: Learned indexes for a google-scale disk-based database. CoRR arxiv:2012.12501 (2020)
2. Beckmann, N., Kriegel, H., et al.: The r*-tree: an efficient and robust access method for points and rectangles. In: Garcia-Molina, H., Jagadish, H.V. (eds.) SIGMOD, pp. 322–331. ACM Press (1990)
3. Beckmann, N., Seeger, B.: A revised r*-tree in comparison with related index structures. In: Çetintemel, U., Zdonik, S.B., et al. (eds.) SIGMOD, pp. 799–812. ACM (2009)
4. Davitkova, A., Milchevski, E., Michel, S.: The ml-index: a multidimensional, learned index for point, range, and nearest-neighbor queries. In: Bonifati, A., Zhou, Y., et al. (eds.) EDBT, pp. 407–410. OpenProceedings.org (2020)
5. Ding, J., Nathan, V., et al.: Tsunami: a learned multi-dimensional index for correlated data and skewed workloads. Proc. VLDB Endow. 14(2), 74–86 (2020)