Author:
Tan Lei,Yang Yunchao,Hu Miao,Zhou Yipeng,Wu Di
Publisher
Springer Nature Singapore
Reference37 articles.
1. Cai, S., Zhao, Y., Liu, Z., Qiu, C., Wang, X., Hu, Q.: Mgfl: multi-granularity federated learning in edge computing systems. In: Algorithms and Architectures for Parallel Processing (ICA3PP), pp. 549–563. Springer International Publishing, Cham (2022). https://doi.org/10.1007/978-3-030-95384-3_34
2. Chen, F., Chen, N., Mao, H., Hu, H.: Assessing four neural networks on handwritten digit recognition dataset (MNIST). arXiv preprint arXiv:1811.08278 (2018). https://doi.org/10.48550/ARXIV.1811.08278
3. Covert, I., Lundberg, S.M., Lee, S.I.: Understanding global feature contributions with additive importance measures. Adv. Neural Inform. Process. Syst. (NeurIPS) 33, 17212–17223 (2020)
4. Deng, Y., et al.: Fair: Quality-aware federated learning with precise user incentive and model aggregation. In: IEEE Conference on Computer Communications (INFOCOM), pp. 1–10. IEEE (2021). https://doi.org/10.1109/INFOCOM42981.2021.9488743
5. Fu, F., et al.: VF2Boost: very fast vertical federated gradient boosting for cross-enterprise learning. In: Proceedings of the 2021 International Conference on Management of Data, pp. 563–576 (2021)