Author:
Guan Jirui,Gao Yang,Cheng Xiaoqing,Wang Dexi,Wang Lianfu,Ren Xiangyu
Publisher
Springer Nature Singapore
Reference10 articles.
1. Wang, W., Lei, Y., Yan, T., Li, N., Nandi, A.: Residual convolution long short-term memory network for machines remaining useful life prediction and uncertainty quantification. J. Dyn. Monitoring Diagnost. 1(1), 2–8 (2022)
2. Luo, P., Hu, J., Zhang, L., Hu, N., Yin, Z.: Research on remaining useful life prediction method of rolling bearing based on health indicator extraction and trajectory enhanced particle filter. J. Dyn. Monitoring Diagnost., 66–83 (2022)
3. Gebraeel, N., Lei, Y., Li, N., Si, X., Zio, E.: Prognostics and remaining useful life prediction of machinery: advances, opportunities and challenges. J. Dyn. Monitoring Diagnost. 2(1), 1–12 (2023)
4. Wang, B., Lei, Y., Yan, T., Li, N., Guo, L.: Recurrent convolutional neural network: a new framework for remaining useful life prediction of machinery. Neurocomputing 379, 117–129 (2020)
5. Ma, M., Mao, Z.: Deep-convolution-based LSTM network for remaining useful life prediction. IEEE Trans. Industr. Inf. 17(3), 1658–1667 (2020)