Author:
Cao Pu,Pei Yan,Li Jianqiang
Publisher
Springer Nature Singapore
Reference10 articles.
1. Vapnik, V.: Principles of risk minimization for learning theory. In: Proceedings of Advances in Neural Information Processing Systems, pp. 831–838 (1991)
2. Koza, J.R.: Genetic programming as a means for programming computers by natural selection. Stat. Comput. 4(2), 87–112 (1994)
3. Ying, B., Xue, B., Zhang, M.: A divide-and-conquer genetic programming algorithm with ensembles for image classification. IEEE Trans. Evol. Comput. 25(6), 1148–1162 (2021)
4. Gao, S., Yu, Y., Wang, Y., et al.: Chaotic local search-based differential evolution algorithms for optimization. IEEE Trans. Syst. Man Cybern. Syst. 51(6), 3954–3967 (2021)
5. Pei, Y.: Chaotic evolution: fusion of chaotic ergodicity and evolutionary iteration for optimization. Nat. Comput. 13(1), 79–96 (2014)