Study on Prediction Method for Compression Scour Depth of River-Crossing Bridge

Author:

Shang Qianqian,Xu Hui,Zhang Jian

Abstract

AbstractRiverbed deformation caused by river-crossing bridge construction can be divided into compression scour and local scour. Compared with local scour, fewer studies have been made on the compression scour caused by bridge piers. It is noteworthy that, the compression scour can lead to riverbed scour of the whole cross section along a bridge site, which is obviously detrimental to the bridge foundation safety. Based on a summary of existing research findings, a prediction model for the compression scour of bridge piers is constructed, and the model is applied in predicting the compression scour depth of Shiyezhou River Bridge in the lower reaches of the Yangtze River. Firstly, the pier boundary treatment methods at different spatial scales are discussed. Subsequently, the selection method of flow and sediment processes is proposed from the engineering safety point of view, according to the flow and sediment characteristics on the lower reaches of the Yangtze River. Finally, the depth of compression scour around the upstream and downstream of Shiyezhou Bridge piers are predicted, and comparisons were made between the prediction depth of Shiyezhou Bridge and other existing bridges in the lower reaches of the Yangtze River. Comparisons show that the compression scour depth of Shiyezhou Bridge was basically equivalent to that of other bridges downstream the Yangtze River. The results indicate that the method for predicting the compression scour depth of bridge piers is reasonable and feasible, and the prediction of compression scour depth can provide technical basis for determining the embedment depth of the bridge pier foundation.

Publisher

Springer Nature Singapore

Reference23 articles.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3