Study on the Mechanism of Water Loss and Capsizing of Multi - point Suspension Ship Lift

Author:

Chen Lin,Hu Yaan,Li Zhonghua,Guo Chao

Abstract

AbstractThe stability of ship lift chamber operation has always been the key factor restricting the development of ship lift, which has not been well solved for a long time. With the development of upsizing of ships, the super-huge fully balanced ship lift with hoisting steel wire rope over 10000–15000 t is the development trend in the future. The mechanism of water loss and capsizing of multi-point ship lift is the most key scientific problem, and the most core technical problem is the layout and operation control of ship lift system. A generalized physical model of ship lift with the model scale of 1:33 was established to study the influence of multiple factors on water loss stability of ship chamber, such as gravity counterweight/torque counterweight ratio, water leakage flow, the position of suspension points among the chamber, quantity of the suspension points, and so on. Secondly, the structural dynamics equations of hoisting system is deduced in detail, considering the water fluctuation in the process of water loss caused by longitudinal capsizing moment influence on balance system, and research on the transient dynamic characteristics of hoisting system of the filtration process, determine the ship chamber conditions of stability for the trim through the Lyapunov stability criterion. The optimization calculation model of ship lift mechanical suspension system layout under the action of multiple constraints was established, and the effective measures will be given to improve the pitch stability. The results can provide technical guidance for the upsizing of ship lifters.

Publisher

Springer Nature Singapore

Reference20 articles.

1. Chen J, Ma G (1996) Chamber stability of hoisting fully balancing type vertical ship lift. Hydro-Sci Eng 4:301–308

2. Cheng G, Li H, Ruan S (2005) Free vibration characteristics and stability analysis of ship lift system. J Mech Strength 3:276–281

3. Cheng X, Shi D, Li H, Xia R, Zhang Y, Zhou J (2018) Stability and parameters influence study of fully balanced hoist vertical ship lift. Struct Eng Mech 66:583–594

4. Dodge FT (2000) The new dynamic behavior of liquids in moving containers. [Update of NASA SP-106]. Southwest Research Institute, San Antonio, Texas

5. Faltinsen OM, Timokha AN (2009) Sloshing. Cambridge University Press, Cambridge

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3