On Characterizing Flow Resistance in a Tidal Reach

Author:

Jing Ye,Lei Xueting,Qin Jie,Wu Teng,Agbemafle Elikplim

Abstract

AbstractThe tidal reaches are characterized by unsteady and non-uniform flow (UNF), which is significantly different from the commonly assumed steady and uniform flow (SUF) in hydraulics. The SUF shows invariant temporal and spatial flow characteristics, and thus flow acceleration is absent in a prismatic channel. However, for the UNF, the variation of flow velocity and depth in both temporal and spatial scales causes the loss of flow energy, and thus increases the flow resistance. In order to clarify the variation of flow resistance and its influencing factors in tidal reaches, this study investigates the flow resistance characteristics under UNF conditions. In this study, a typical tidal section of the Lower Yangtze River (LYR) – Kouanzhi Waterway (KW) – was selected as the study area, where the temporal variation of water surface along the river course at different tide levels, the bathymetry of multiple cross-sections, the distribution of cross-sectional flow velocity and its temporal variation were measured in detail. Based on these field measurement data, the contribution terms to the energy slope were calculated and evaluated, by decomposing the momentum equation. The calculated contributing terms include water surface gradient, local acceleration, and convective acceleration. The results showed that the local acceleration and convective acceleration have a substantial impact on the energy slope during specific time periods, which was found to be more significant than the findings in previous studies. The results show that the local acceleration term is more significant than the convective acceleration term except when the water surface slope is close to zero, and its contribution is significant throughout the flood tide and the initial ebb tide periods. The above research results are of great significance for the investigation of flow resistance mechanisms and numerical simulations in tidal rivers.

Publisher

Springer Nature Singapore

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3