Author:
Du Hangyuan,Liu Yuan,Wang Wenjian,Bai Liang
Publisher
Springer Nature Singapore
Reference20 articles.
1. Tang, J., Hu, X., Gao, H., et al.: Exploiting local and global social context for recommendation. In: Proceedings of International Joint Conference on Artificial Intelligence, pp. 2712–2718. World Scientific, Chiyoda City, Tokyo (2013)
2. Gao, C., Zheng, Y., Li, N., et al.: A survey of graph neural networks for recommender systems: challenges, methods, and directions. ACM Trans. Recommender Syst. 1(1), 1–51 (2023)
3. Wang, X., He, X., Wang, M., et al.: Neural graph collaborative filtering. In: Proceedings of the 42nd International ACM SIGIR Conference on Research and Development in Information Retrieval, pp. 165–174. Association for Computing Machinery, New York, NY, United States (2019)
4. Wu, L., Sun, P., Fu, Y., et al.: A neural influence diffusion model for social recommendation. In: Proceedings of the 42nd International ACM SIGIR Conference on Research and Development in Information Retrieval, pp. 235–244. Association for Computing Machinery, New York, NY, United States (2019)
5. He, X., Deng, K., Wang, X., et al.: LightGCN: simplifying and powering graph convolution network for recommendation. In: Proceedings of the 43rd International ACM SIGIR Conference on Research and Development in Information Retrieval, pp. 639–648. Association for Computing Machinery, New York, NY, United States (2020)