Author:
Hung Bui Duong,Anh Dao Nam,Tho Dang Xuan
Reference38 articles.
1. Chawla, N.V., Hall, L.O., Bowyer, K.W., Kegelmeyer, W.P.: SMOTE: synthetic minority oversampling technique. J. Artif. Int. Res. 16, 321–357 (2002)
2. Munkhdalai, T., Namsrai, O.E., Ryu, K.H.: Self-training in significance space of support vectors for imbalanced biomedical event data. BMC Bioinform. 16(S-7), S6 (2015)
3. Gao, Z., Zhang, L., Chen, M.Y., Hauptmann, A.G., Zhang, H., Cai, A.-N.: Enhanced and hierarchical structure algorithm for data imbalance problem in semantic extraction under massive video dataset. Multimed. Tools Appl. 68(3), 641–657 (2015)
4. Tsai, C.-H., Chang, L.C., Chiang, H.C.: Forecasting of ozone episode days by cost-sensitive neural network methods. Sci. Total Environ. 407(6), 2124–2135 (2009)
5. Siers, M.J., Islam, M.Z.: Software defect prediction using a cost sensitive decision forest and voting, and a potential solution to the class imbalance problem. Info. Syst. 51, 62–71 (2015)
Cited by
3 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献