1. J. Bès, K.C. Chan, R. Sanders, Every weakly sequentially hypercyclic shift is norm hypercyclic. Math. Proc. R. Irish Acad. 105A, 79–85 (2005)
2. J. Bès, K. Chan, R. Sanders, Weak * hypercyclicity and supercyclicity of shifts on $$\ell ^\infty $$. Integr. Equ. Oper. Theory 55, 363–376 (2006)
3. P.S. Bourdon, N.S. Feldman, Somewhere dense orbits are everywhere dense. Indiana Univ. Math. J. 52, 811–819 (2003)
4. K.C. Chan, The density of hypercyclic operators on a Hilbert space. J. Oper. Theory 47, 131–143 (2002)
5. K.C. Chan, R. Sanders, A weakly hypercyclic operator that is not norm hypercyclic. J. Oper. Theory 52(1), 39–59 (2004)