Author:
Zhao Lingzhong,Luo Fuliang,Zhai Zhongyi,Qian Junyan,Ding Hao,Li Changye
Publisher
Springer Nature Singapore
Reference14 articles.
1. Chen, C., et al.: Toward a thousand lights: decentralized deep reinforcement learning for large-scale traffic signal control. In: Proceedings of the AAAI Conference on Artificial Intelligence, vol. 34, pp. 3414–3421 (2020)
2. Zhang, Y., Zhu, H., Tang, D., Zhou, T., Gui, Y.: Dynamic job shop scheduling based on deep reinforcement learning for multi-agent manufacturing systems. Rob. Comput.-Integr. Manuf. 78, 102412 (2022)
3. Kraemer, L., Banerjee, B.: Multi-agent reinforcement learning as a rehearsal for decentralized planning. Neurocomputing 190, 82–94 (2016)
4. Hu, S., Zhu, F., Chang, X., Liang, X.: Updet: universal multi-agent reinforcement learning via policy decoupling with transformers. arXiv preprint arXiv:2101.08001 (2021)
5. Gallici, M., Martin, M., Masmitja, I.: Transfqmix: transformers for leveraging the graph structure of multi-agent reinforcement learning problems. arXiv preprint arXiv:2301.05334 (2023)