1. Adams, S., Dirr, N., Peletier, M.A., Zimmer, J.: From a large-deviations principle to the Wasserstein gradient flow: a new micro-macro passage. Commun. Math. Phys. 307(3), 791–815 (2011)
2. Ambrosio, L.: Transport equation and Cauchy problem for BV vector fields. Invent. Math. 158(2), 227–260 (2004)
3. Ambrosio, L., Pratelli, A: Existence and stability results in the L
1 theory of optimal transportation. In: Caffarelli, L.A., Salsa, S. (eds.) Optimal Transportation and Applications (CIME Series, Martina Franca, 2001), Lecture Notes in Math., vol. 1813, pp. 123–160. Springer, Heidelberg (2003)
4. Bakelman, I.J.: Convex Analysis and Nonlinear Geometric Elliptic Equations. Springer, Heidelberg (1994)
5. Benamou, J.D., Brenier, Y.: A numerical method for the optimal mass transport problem and related problems. In: Caffarelli, L.A., Milman, M. (eds.) Monge Ampére Equation: Applications to Geometry and Optimization, Proceedings of the NSF–CBMS Conference, Deerfield Beach, FL, 1997, Contemporary Mathematics, vol. 226, pp. 1–11. American Mathematical Society, Providence, RI (1999)