Hybrid Feature-Based Invasive Ductal Carcinoma Classification in Breast Histopathology Images
Author:
Publisher
Springer Nature Singapore
Link
https://link.springer.com/content/pdf/10.1007/978-981-16-7996-4_37
Reference19 articles.
1. Unger, K.: Challenges to the early diagnosis and treatment of breast cancer in developing countries. World J. Clin. Oncol. 5(3), 465 (2014)
2. Basavanhally, A., Shih, N., Feldman, M., Mies, C., Madabhushi, A., Ganesan, S., Tomaszewski, J.: Multi-field-of-view framework for distinguishing tumor grade in ER+ breast cancer from entire histopathology slides. IEEE Trans. Biomed. Eng. 60, 2089–2099 (2013)
3. Yang, S.D., Wu, G., Suk, H.I.: Deep learning in medical image analysis. Annu. Rev. Biomed. Eng. 19:221–248 (2017)
4. Arau jo, T., Castro1, E., Aguiar, P., Aresta, G., Rouco, J., Eloy, C., Polo nia, A., Campilho, A.: Classification of breast cancer histology images using Convolutional Neural Networks (2017)
5. Issac Niwas, S., Palanisamy, P., Isa, N.A.M., Zhang, W.J., Chibbar, R.: Log-gabor wavelets-based breast carcinoma classification using least square support vector machine. In: 2011 IEEE International Conference on Imaging Systems and Techniques], pp. 219–223, May, 2011
Cited by 8 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献
1. SwinCNN: An Integrated Swin Transformer and CNN for Improved Breast Cancer Grade Classification;IEEE Access;2024
2. Breast Cancer Histopathology Image Classification Using Ensemble Feature Set;2023 14th International Conference on Computing Communication and Networking Technologies (ICCCNT);2023-07-06
3. An effective approach for the nuclei segmentation from breast histopathological images using star-convex polygon;Procedia Computer Science;2023
4. Ensemble Deep Learning Model for Breast Histopathology Image Classification;ICT Infrastructure and Computing;2022-11-08
5. Two-Phase Mitotic Detection Using Deep Learning Techniques;ICT Infrastructure and Computing;2022-11-08
1.学者识别学者识别
2.学术分析学术分析
3.人才评估人才评估
"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370
www.globalauthorid.com
TOP
Copyright © 2019-2024 北京同舟云网络信息技术有限公司 京公网安备11010802033243号 京ICP备18003416号-3