1. Blanco-Justicia A, Domingo-Ferrer J (2019) Machine learning explainability through comprehensible decision trees. In: Machine learning and knowledge extraction: third IFIP TC 5, TC 12, WG 8.4, WG 8.9, WG 12.9 international cross-domain conference, CD-MAKE 2019, Canterbury, UK, 26–29 Aug 2019, Proceedings 3. Springer, Berlin, pp 15–26
2. Breiman L, Shang N (1996) Born again trees. University of California, Berkeley, Berkeley, CA, Technical report, vol 1, issue 2, p 4
3. Doshi-Velez F, Kim B (2017) Towards a rigorous science of interpretable machine learning. arXiv:1702.08608
4. Gunning D, Aha D (2019) DARPA’s explainable artificial intelligence (XAI) program. AI Mag 40(2):44–58
5. Hall M, Harborne D, Tomsett R, Galetic V, Quintana-Amate S, Nottle A, Preece A (2019) A systematic method to understand requirements for explainable ai (xai) systems. In: Proceedings of the IJCAI workshop on explainable artificial intelligence (XAI 2019), Macau, China. vol 11