Publisher
Springer Nature Singapore
Reference24 articles.
1. Ribeiro, M.T., Singh, S., Guestrin, C.: “why should i trust you?” explaining the predictions of any classifier. In: Proceedings of the 22nd ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pp. 1135–1144 (2016)
2. Doshi-Velez, F., Kim, B.: Towards a rigorous science of interpretable machine learning. arXiv preprint arXiv:1702.08608 (2017)
3. Communications in Computer and Information Science;C Molnar,2020
4. Samek, W., Wiegand, T., Müller, K.-R.: Explainable artificial intelligence: understanding, visualizing and interpreting deep learning models. arXiv preprint arXiv:1708.08296 (2017)
5. Choraś, M., Pawlicki, M., Puchalski, D., Kozik, R.: Machine learning–the results are not the only thing that matters! what about security, explainability and fairness? In: Krzhizhanovskaya, V.V., et al. (eds.) Computational Science–ICCS 2020: 20th International Conference, Amsterdam, The Netherlands, 3–5 June 2020, Proceedings, Part IV 20, pp. 615–628. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-50423-6_46