Author:
Li Juntao,Cao Fuzhen,Wang Xiaoyu,Wu Yingdi
Publisher
Springer Nature Singapore
Reference17 articles.
1. Yoo, S., Sinha, A., Yang, D., Altorki, N.K., Tandon, R., et al.: Integrative network analysis of early-stage lung adenocarcinoma identifies aurora kinase inhibition as interceptor of invasion and progression. Nat. Commun. 13(1), 1592 (2022). https://doi.org/10.1038/s41467-022-29230-7
2. Qiu, M., Xia, W., Chen, R., Wang, S., Xu, Y., et al.: The circular RNA circPRKCI promotes tumor growth in lung adenocarcinoma. Cancer Res. 78(11), 2839–2851 (2018). https://doi.org/10.1158/0008-5472.CAN-17-2808
3. Zhang, G., Cao, Y., Zhang, J., Ren, J., Zhao, Z., et al.: Predicting EGFR mutation status in lung adenocarcinoma: development and validation of a computed tomography-based radiomics signature. Am. J. Cancer Res. 11(2), 546–560 (2021). PMID: 33575086
4. Lavin, Y., Kobayashi, S., Leader, A., Amir, E.D., Elefant, N., et al.: Innate immune landscape in early lung adenocarcinoma by paired single-cell analyses. Cell 169(4), 750–765 (2017). https://doi.org/10.1016/j.cell.2017.04.014
5. Wang, S., Shi, J., Ye, Z., Dong, D., Yu, D., et al.: Predicting EGFR mutation status in lung adenocarcinoma on computed tomography image using deep learning. Eur. Respir. J. 53(3), 1800986 (2019). https://doi.org/10.1183/13993003.00986-2018