1. Korczynski, M., Duda, A.: Markov chain finger printing to classify encrypted traffic. In: 2014 Proceedings of IEEE INFOCOM, pp. 781–789 (2014)
2. Shen, M., Wei, M., Zhu, L., Wang, M.: Classification of encrypted traffic with second-order Markov chains and application attribute bigrams. IEEE Trans. Inf. Forensics Secur. 12(8), 1830–1843 (2017)
3. Zhang, Z., Li, J., Manikopoulos, C.N., Jorgenson, J., Ucles, J.: HIDE: a hierarchical network intrusion detection system using statistical pre-processing and neural network classification. In: Proceedings of IEEE Workshop on Information Assurance and Security, pp. 85–90 (2001)
4. Wang, W., Zhu, M., Wang, J., Zeng, X., Yang, Z.: End-to-end encrypted traffic classification with one-dimensional convolution neural networks. In: 2017 IEEE International Conference on Intelligence and Security Informatics (ISI), pp. 43–48 (2017)
5. Lotfollahi, M., Zade, R.S.H., Siavoshani, M.J., Saberian, M.: Deep packet: a novel approach for encrypted traffic classification using deep learning. arXiv preprint
arXiv:1709.02656
(2017)