Author:
Suhaidi Mustazzihim,Kadir Rabiah Abdul,Tiun Sabrina
Publisher
Springer Nature Singapore
Reference24 articles.
1. Performance, A., Alshdaifat, E., Alshdaifat, D., Alsarhan, A., Hussein, F., Moh, S.: The effect of preprocessing techniques, applied to numeric. Data. 6, 11 (2021)
2. Iturra-bocaz, G., Bravo-marquez, F.: RiverText : A Python Library for Training and Evaluating Incremental Word Embeddings from Text Data Streams RiverText : A Python Library for Training and Evaluating Incremental Word Embeddings from Text Data Streams, vol. 1, no. 1. Association for Computing Machinery (2023)
3. Misra, P., Yadav, A.S.: Impact of preprocessing methods on healthcare predictions. SSRN Electron. J. (2019)
4. Rabut, B.A. Fajardo, A.C., Medina, R.P.: Multi-class document classification using improved word embeddings. In: ACM International Conference Proceeding Series, pp. 42–46 (2019)
5. Hadiprakoso, R.B., Setiawan, H., Yasa, R.N.: Text Preprocessing for Optimal Accuracy in Indonesian Sentiment Analysis Text Preprocessing for Optimal Accuracy in Indonesian Sentiment Analysis Using a Deep Learning Model with Word Embedding. August (2021)