Organizing Charge Flow with DNA

Author:

Walker David J. F.,Szmuc Eric R.,Ellington Andrew D.

Abstract

AbstractThe seminal recognition by Ned Seeman that DNA could be programmed via base-pairing to form higher order structures is well known. What may have been partially forgotten is one of Dr. Seeman’s strong motivations for forming precise and programmable nanostructures was to create nanoelectronic devices. This motivation is particularly apt given that modern electronic devices require precision positioning of conductive elements to modulate and control electronic properties, and that such positioning is inherently limited by the scaling of photoresist technologies: DNA may literally be one of the few ways to make devices smaller (Liddle and Gallatin in Nanoscale 3:2679–2688 [1]). As with many other insights regarding DNA at the nanoscale, Ned Seeman recognized the possibilities of DNA-templated electronic devices as early as 1987 (Robinson and Seeman in Protein Eng. 1:295–300 [2]). As of 2002, Braun’s group attempted to develop methods for lithography that involved metalating DNA (Keren et al. in Science 297:72–75 [3]). However, this instance involved linear, double-stranded DNA, in which portions were separated using RecA, and thus, the overall complexity of the lithography was limited. Since then, the extraordinary control afforded by DNA nanotechnology has provided equally interesting opportunities for creating complex electronic circuitry, either via turning DNA into an electronic device itself (Gates et al. in Crit. Rev. Anal. Chem. 44:354–370 [4]), or by having DNA organize other materials (Hu and Niemeyer in Adv. Mat. 31(26), [5]) that can be electronic devices (Dai et al. in Nano Lett. 20:5604–5615 [6]).

Publisher

Springer Nature Singapore

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3