Author:
Walker David J. F.,Szmuc Eric R.,Ellington Andrew D.
Abstract
AbstractThe seminal recognition by Ned Seeman that DNA could be programmed via base-pairing to form higher order structures is well known. What may have been partially forgotten is one of Dr. Seeman’s strong motivations for forming precise and programmable nanostructures was to create nanoelectronic devices. This motivation is particularly apt given that modern electronic devices require precision positioning of conductive elements to modulate and control electronic properties, and that such positioning is inherently limited by the scaling of photoresist technologies: DNA may literally be one of the few ways to make devices smaller (Liddle and Gallatin in Nanoscale 3:2679–2688 [1]). As with many other insights regarding DNA at the nanoscale, Ned Seeman recognized the possibilities of DNA-templated electronic devices as early as 1987 (Robinson and Seeman in Protein Eng. 1:295–300 [2]). As of 2002, Braun’s group attempted to develop methods for lithography that involved metalating DNA (Keren et al. in Science 297:72–75 [3]). However, this instance involved linear, double-stranded DNA, in which portions were separated using RecA, and thus, the overall complexity of the lithography was limited. Since then, the extraordinary control afforded by DNA nanotechnology has provided equally interesting opportunities for creating complex electronic circuitry, either via turning DNA into an electronic device itself (Gates et al. in Crit. Rev. Anal. Chem. 44:354–370 [4]), or by having DNA organize other materials (Hu and Niemeyer in Adv. Mat. 31(26), [5]) that can be electronic devices (Dai et al. in Nano Lett. 20:5604–5615 [6]).
Publisher
Springer Nature Singapore