Scaling Up DNA Computing with Array-Based Synthesis and High-Throughput Sequencing

Author:

Chen Yuan-Jyue,Seelig Georg

Abstract

AbstractIt was 40 years ago today, when Ned taught DNA to play [32]. When Ned Seeman began laying the theoretical foundations of what is now DNA nanotechnology, he likely did not imagine the entire diversity and scale of molecular structures, machines, and computing devices that would be enabled by his work. While there are many reasons for the success of the field, not least the creativity shown by Ned and the community he helped build, such progress would not have been possible without breakthroughs in DNA synthesis and molecular analysis technology. Here, we argue that the technologies that will enable the next generation of DNA nanotechnology have already arrived but that we have not yet fully taken advantage of them. Specifically, we believe that it will become possible, in the near future, to dramatically scale up DNA nanotechnology through the use of array-synthesized DNA and high-throughput DNA sequencing. In this article, we provide an example of how DNA logic gates and circuits can be produced through enzymatic processing of array-synthesized DNA and can be read out by sequencing in a massively parallel format. We experimentally demonstrate processing and readout of 380 molecular gates in a single reaction. We further speculate that in the longer term, very large-scale DNA computing will find applications in the context of molecular diagnostics and, in particular, DNA data storage.

Publisher

Springer Nature Singapore

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3