Author:
Raj Anushree,Pallavi M. O.
Publisher
Springer Nature Singapore
Reference28 articles.
1. S.I. Chen, H.T. Tseng, C.C. Hsieh, Evaluating the impact of soy compounds on breast cancer using the data mining approach. Food Funct. 11(5), 4561–4570 (2020). https://doi.org/10.1039/C9FO00976K. PubMed PMID: 32400770
2. S.A. Mokhtar, A. Elsayad, Predicting the severity of breast masses with data mining methods (2013). ArXiv preprint arXiv:1305.7057. https://doi.org/10.48550/arXiv.1305.7057
3. J. Fan, Y. Wu, M. Yuan, D. Page, J. Liu, I.M. Ong, P. Peissig, E. Burnside, Structure-leveraged methods in breast cancer risk prediction. J. Mach. Learn. Res. 17(1), 2956–2970 (2016)
4. E.S. Burnside, J. Liu, Y. Wu, A.A. Onitilo, C.A. McCarty, C.D. Page, et al., Comparing mammography abnormality features to genetic variants in the prediction of breast cancer in women recommended for breast biopsy. Acad. Radiol. 23(1), 62–69 (2016). https://doi.org/10.1016/j.acra.2015.09.007. PubMed PMID: 26514439. PubMed PMCID: PMC4684977
5. K. Stephens, New mammogram measures of breast cancer risk could revolutionize screening. AXIS Imaging News (2020)