Author:
Ribeiro Pedro,Saini Anil,Moran Jay,Matsumoto Nicholas,Choi Hyunjun,Hernandez Miguel,Moore Jason H.
Publisher
Springer Nature Singapore
Reference16 articles.
1. Akiba, T., Sano, S., Yanase, T., Ohta, T., Koyama, M.: Optuna: a next-generation hyperparameter optimization framework. In: Proceedings of the 25th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining (2019)
2. Blank, J., Deb, K.: pymoo: Multi-objective optimization in python. IEEE Access 8, 89497–89509 (2020)
3. Cavaglià, M., Gaudio, S., Hansen, T., Staats, K., Szczepańczyk, M., Zanolin, M.: Improving the background of gravitational-wave searches for core collapse supernovae: a machine learning approach. Mach. Learn.: Sci. Technol. 1(1), 015005 (2020)
4. Deb, K., Pratap, A., Agarwal, S., Meyarivan, T.: A fast and elitist multiobjective genetic algorithm: Nsga-ii. IEEE Trans. Evol. Comput. 6(2), 182–197 (2002)
5. Feurer, M., Eggensperger, K., Falkner, S., Lindauer, M., Hutter, F.: Auto-sklearn 2.0: hands-free automl via meta-learning. arXiv:2007.04074 [cs.LG] (2020)