Author:
Li Xiang,Zhao Caidan,Gao Chenxing,Hu Wenxin
Publisher
Springer Nature Singapore
Reference19 articles.
1. Kamat, P., Sugandhi, R.: Anomaly detection for predictive maintenance in industry 4.0-a survey. In: E3S Web of Conferences, vol. 170. EDP Sciences, p. 02007 (2020)
2. Guan, J., Liu, Y., Zhu, Q., Zheng, T., Han, J., Wang, W.: Time-weighted frequency domain audio representation with GMM estimator for anomalous sound detection. In: IEEE International Conference on Acoustics, Speech and Signal Processing ICASSP 2023, Rhodes Island, Greece, 4–10 June, IEEE, 2023, pp. 1–5 (2023)
3. Suefusa, K., Nishida, T., Purohit, H., Tanabe, R., Endo, T., Kawaguchi, Y.: Anomalous sound detection based on interpolation deep neural network. In: 2020 IEEE International Conference on Acoustics, Speech and Signal Processing, ICASSP 2020, Barcelona, Spain, May 4–8, IEEE, 2020, pp. 271–275 (2020)
4. Zong, B., et al.: Deep autoencoding Gaussian mixture model for unsupervised anomaly detection. In: 6th International Conference on Learning Representations, ICLR 2018, Vancouver, BC, Canada, April 30 - May 3, 2018, Conference Track Proceedings. OpenReview.net (2018)
5. Liu, Z., et al.: CLF-AIAD: a contrastive learning framework for acoustic industrial anomaly detection. In: Luo, B., Cheng, L., Wu, Z. , Li, H., Li, C. (eds.) Neural Information Processing -30th International Conference, ICONIP 2023, Changsha, China, November 20–23, 2023, vol. 1961, pp.125–137. Springer (2023)