Prediction of Solar Power Using Linear Regression
Author:
Publisher
Springer Singapore
Link
https://link.springer.com/content/pdf/10.1007/978-981-16-9033-4_53
Reference11 articles.
1. Wang Z (2019) Solar power forecasting. Thesis submitted for the degree of Doctor of Philosophy in the School of Computer Science at The University of Sydney
2. Khan A, Bhatnagar R, Masrani V, Lobo VB (2020) A comparative study on solar power forecasting using ensemble learning. In: 2020 4th international conference on trends in electronics and informatics (ICOEI)(48184), 2020, pp 224–231. https://doi.org/10.1109/ICOEI48184.2020.9142884
3. Carrera B, Kim K (2020) Comparison analysis of machine learning techniques for photovoltaic prediction using weather sensor data. 1 June 2020
4. Prakash A, Singh SK (2014) Towards an efficient regression model for solar energy prediction. In: 2014 innovative applications of computational intelligence on power, energy and controls with their impact on humanity (CIPECH), 2014, pp 18–23. doi: https://doi.org/10.1109/CIPECH.2014.7019040
5. Xu Z, Yang G, Geng H (2019) Power forecasting of photovoltaic generation based on multiple linear regression method with real-time correction term. In: 2019 22nd international conference on electrical machines and systems (ICEMS), 2019, pp 1–4. https://doi.org/10.1109/ICEMS.2019.8922096
Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献
1. Forecasting Solar Power Generation: A Comparative Analysis of Machine Learning Models;2024 International Conference on Renewable Energies and Smart Technologies (REST);2024-06-27
2. Evaluating the performance of the Anwaralardh photovoltaic power generation plant in Jordan: Comparative analysis using artificial neural networks and multiple linear regression modeling;International Journal of Renewable Energy Development;2024-04-25
3. Estimation of Solar PV Plant Output using LSTM-CNN Algorithm;2023 International Conference on Digital Applications, Transformation & Economy (ICDATE);2023-07-14
4. Estimation of Solar PV Power Plant Output Using Machine Learning Algorithms;2023 International Conference on Digital Applications, Transformation & Economy (ICDATE);2023-07-14
1.学者识别学者识别
2.学术分析学术分析
3.人才评估人才评估
"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370
www.globalauthorid.com
TOP
Copyright © 2019-2024 北京同舟云网络信息技术有限公司 京公网安备11010802033243号 京ICP备18003416号-3