Author:
Luo Jianping,Mai Weimin,Lin Zhuo,Yin Jieli,Huang Zijing,Chen Xiang
Publisher
Springer Nature Singapore
Reference29 articles.
1. Wang, S., Cao, J., Philip, S.Y.: Deep learning for spatio-temporal data mining: a survey. IEEE Trans. Knowl. Data Eng. 34(8), 3681–3700 (2020)
2. Chen, C., Feng, T., Ding, C., Yu, B., Yao, B.: Examining the spatial-temporal relationship between urban built environment and taxi ridership: results of a semi-parametric GWPR model. J. Transp. Geogr. 96, 103172 (2021)
3. Jing, C., et al.: Context-aware matrix factorization for the identification of urban functional regions with poi and taxi OD data. ISPRS Int. J. Geo Inf. 11(6), 351 (2022)
4. Li, Z., Wang, X., Gao, F., Tang, J., Xu, H.: Analysis of mobility patterns for urban taxi ridership: the role of the built environment. Transportation 51, 1–23 (2023)
5. Liao, C., et al.: Wheels know why you travel: predicting trip purpose via a dual-attention graph embedding network. Proc. ACM Interact. Mob. Wearable Ubiquitous Technol. 6(1), 1–22 (2022)