Author:
Long Yuhan,Yang Yang,Fan Chengwen,Gao Zhipeng,Rui Lanlan
Publisher
Springer Nature Singapore
Reference12 articles.
1. Fang, H., Deng, J., Zhao, B., Shi, Y., Zhou, J., Shao, S.: LEFE-Net: a lightweight efficient feature extraction network with strong robustness for bearing fault diagnosis. IEEE Trans. Instrum. Meas. 70, 1–11 (2021)
2. Guo, Q., Li, Y., Song, Y., Wang, D., Chen, W.: Intelligent fault diagnosis method based on full 1-D convolutional generative adversarial network. IEEE Trans. Industr. Inf. 16(3), 2044–2053 (2020)
3. Soraya, B., Faouzi, H.M., Abderrazak, L.: Fault diagnosis of Tennessee Eastman process based on static PCA. In: International Conference on Sustainable Renewable Energy Systems and Applications, pp. 1–6 (2019)
4. Yu, E., Luo, L., Peng, X., Tong, C.: A multigroup fault detection and diagnosis framework for large-scale industrial systems using nonlinear multivariate analysis. Expert. Syst. Appl. 206(15) (2022)
5. Chi, Y., Wang, Z.J., Leung, V.C.M.: Distributed knowledge inference framework for intelligent fault diagnosis in IIoT systems. IEEE Trans. Netw. Sci. Eng. 9(5), 3152–3165 (2022)