Publisher
Springer Nature Singapore
Reference20 articles.
1. Chen, J., Roberts, C., Weston, P.: Fault detection and diagnosis for railway track circuits using neuro-fuzzy systems. Control. Eng. Pract. 16(5), 585–596 (2008)
2. Xu, J., et al.: Study on the derailment behaviour of a railway wheelset with solid axles in a railway turnout. Vehicle Syst. Dyn. 58(1), 123–143 (2020)
3. Verbertn, K., De Schutter, B., Babuška, R.: Fault diagnosis using spatial and temporal information with application to railway track circuits. Eng. Appl. Artif. Intell. 56, 200–211 (2016)
4. Zhao, L.H., Zhang, C.L., Qiu, K.M., Li, Q.L.: A fault diagnosis method for the tuning area of jointless track circuits based on a neural network. Proc. IMechE Part F: J. Rail. Rapid Transit. 227(4), 333–343 (2013)
5. Zang, Y., Shangguan, W., Cai, B., Wang, H., Pecht, M.G.: ‘Methods for fault diagnosis of high-speed railways: a review. Proc. Inst. Mech. Eng. O, J. Risk Rel. 233(5), 908–922 (2019)