Characterizing the Solution Space of Building Shading System Through Computational and Parametric Feed-Forward Design Approach

Author:

Zhang Qi,Li Linxue,Ma Nan,Shan Yunxiang,Braham William W.

Abstract

AbstractBuilding shading systems play an important role in controlling solar heat gains, which can mitigate the impact of climate change on indoor environment. Effectively reducing cooling demand in summer and heating demand in winter requests further development of seasonally regulated shading systems. The main problem is to find a way that consumes less energy while reaching better comfort, which demonstrates potential for conducting an extensive search to parametrize configuration of shading. This paper aims to investigate the effects of building shading systems on energy and thermal performance in different seasonal conditions through a parametric design method, using Baoshan station in Shanghai, China as a case study to establish a baseline model and test different shading components’ direction, depth, spacing, and tilt angle. The method explores a large solution space at the beginning of design, establishing a variety of approaches that can inform the architectural design team. The results showed that a proper passive shading system can reduce energy consumption by about 13% while thermal comfort meets ASHRAE 55 standards. This finding indicates the possibility of improving the indoor thermal comfort while lessening building energy consumption.

Publisher

Springer Nature Singapore

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3