Author:
Xinting Gao,Weimin Zhuang
Abstract
AbstractBuilding Information Modeling plays an important role in laboratory design. The reasonable layout of the outdoor equipment pipeline is the key to supporting the efficient operation of the laboratory, increasing the flexibility of the laboratory space module, and planning a holistic smart campus space. However, the traditional BIM model lacks convenient visualization and interoperability in the early stage of the program and may lead to inconsistency. This paper aims to propose an integrated visual optimization model toolkit of the equipment and piping using the Rhino + Grasshopper platform. Based on this digital-twin model, the horizontal and vertical space required for the outdoor equipment piping system can be quickly calculated in the site planning stage. The workflow improves the efficiency and accuracy of equipment pipeline system design and reduces multiple design changes. After verifying the validity of the model through two virtual scenarios, it was demonstrated in a real laboratory campus. In the construction drawing stage, the toolkit was used to check whether the interspace of different professional pipeline meets the requirements. This paper expands the design concept, emphasizes the coupling relationship between pipelines and building space, and integrates the experimental and building space concepts throughout the design process.
Publisher
Springer Nature Singapore