Author:
Ming Liu,Jinhui Liu,Jiayun Zou,Yifan Yu,Yanfeng Wu
Publisher
Springer Nature Singapore
Reference12 articles.
1. Zhang, Y., Peng, C., Mou, D., et al.: An adaptive filtering approach based on the dynamic variance model for reducing MEMS gyroscope random error. Sensors 18(11), 3943 (2018)
2. Mones, Z., Alqatawneh, I., Zhen, D., et al.: Fault diagnosis for planetary gearbox using on-rotor MEMS sensor and EMD analysis. In: 2019 25th International Conference on Automation and Computing (ICAC). IEEE (2019)
3. Li, Z.P., Fan, Q.J., Chang, L.M., et al.: Improved wavelet threshold denoising method for MEMS gyroscope. In: IEEE International Conference on Control & Automation. IEEE, pp. 530–534 (2014)
4. George, T., Thomas, D.X.: Signal de-noising using empirical mode decomposition and higher order statistics. Int. J. Signal Process., Image Processing Pattern Recognition 4(2), 91–101 (2011)
5. Flandrin, P., Rilling, G., Goncalves, P.: Empirical mode decomposition as a filter bank. IEEE Signal Process 11(2), 112–114 (2004)