Publisher
Springer Nature Singapore
Reference28 articles.
1. Shatri, E., Fazekas, G.: Optical music recognition: state of the art and major challenges (2020). arXiv:abs/2006.07885
2. Pacha, A., Calvo-Zaragoza, J., Jan Hajič, J.: Learning notation graph construction for full- pipeline optical music recognition. In: Proceedings of the 20th International Society for Music Information Retrieval Conference, pp. 75–82. ISMIR, Delft, The Netherlands (2019). https://doi.org/10.5281/zenodo.3527744
3. Dorfer, M., Arzt, A., Widmer, G.: Learning audio-sheet music correspondences for score identification and offline alignment. In: International Society for Music Information Retrieval Conference (2017)
4. Moss, F.C., Köster, M., Femminis, M., Métrailler, C., Bavaud, F.: Digitizing a 19th-century music theory debate for computational analysis, vol. 2989, pp. 12. 159–170. CEUR Workshop Proceedings (2021). http://infoscience.epfl.ch/record/289818
5. Géraud, T.: A morphological method for music score staff removal. In: 2014 IEEE International Conference on Image Processing (ICIP), pp. 2599–2603 (2014). https://doi.org/10.1109/ICIP.2014.7025526