Author:
Chen Zhi,Liu Xiaoyuan,Chen Lu,Yu Kai
Publisher
Springer Nature Singapore
Reference21 articles.
1. Budzianowski, P., et al.: Sub-domain modelling for dialogue management with hierarchical reinforcement learning. arXiv preprint arXiv:1706.06210 (2017)
2. Chang, C., Yang, R., Chen, L., Zhou, X., Yu, K.: Affordable on-line dialogue policy learning. In: Proceedings of the 2017 Conference on Empirical Methods in Natural Language Processing, pp. 2200–2209 (2017)
3. Chen, L., Tan, B., Long, S., Yu, K.: Structured dialogue policy with graph neural networks. In: Proceedings of the 27th International Conference on Computational Linguistics, pp. 1257–1268 (2018)
4. Chen, L., Zhou, X., Chang, C., Yang, R., Yu, K.: Agent-aware dropout DQN for safe and efficient on-line dialogue policy learning. In: Proceedings of the 2017 Conference on Empirical Methods in Natural Language Processing, pp. 2454–2464 (2017)
5. Gašić, M., Mrkšić, N., Su, P.H., Vandyke, D., Wen, T.H., Young, S.: Policy committee for adaptation in multi-domain spoken dialogue systems. In: 2015 IEEE Workshop on Automatic Speech Recognition and Understanding (ASRU), pp. 806–812. IEEE (2015)
Cited by
1 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献
1. Reinforcement Learning on Graphs: A Survey;IEEE Transactions on Emerging Topics in Computational Intelligence;2023-08