Author:
Qiao Yaoqin,Zhou Huijuan,Zhang Xiayu,Liu Lufei
Publisher
Springer Nature Singapore
Reference11 articles.
1. Yang, X., Xue, Q., Yang, X., et al.: A novel prediction model for the inbound passenger flow of urban rail transit. Inf. Sci. 566, 347–363 (2021)
2. Qiu, B., Fan, W.: Travel time forecasting on a freeway corridor: a dynamic information fusion model based on the random forests approach. Smart Resilient Transp. 3(2), 131–148 (2021)
3. Shi, J.Q., Li, R., Cheng, M.H., et al.: Subway passenger flow prediction based on dynamic spatiotemporal neural network model. J. Transp. Syst. Eng. Inf. Technol. 23(02), 139–147 (2023). (in Chinese)
4. Tang, J., Liang, J., Liu, F., et al.: Multi-community passenger demand prediction at region level based on spatio-temporal graph convolutional network. Transp. Res. Part C: Emerg. Technol. 124, 102951 (2021)
5. Wei, Y., Chen, M.C.: Forecasting the short-term metro passenger flow with empirical mode decomposition and neural networks. Transp. Res. Part C: Emerg. Technol. 21(1), 148–162 (2012)