Author:
Yu Jie,Yu Xiao,Li Jiale,Sun Haoxin,Sun Mengdi
Publisher
Springer Nature Singapore
Reference22 articles.
1. Bhargavan, K., et al.: Formal verification of smart contracts: short paper. In: Proceedings of the 2016 ACM Workshop on Programming Languages and Analysis for Security, New York, NY, USA, pp. 91–96. Association for Computing Machinery (2016)
2. Tian, G., Wang, Q., Zhao, Y., et al.: Smart contract classification with a bi-lstm based approach. IEEE Access 8, 43806–43816 (2020)
3. Xingxin, Y., Haoyue, Z., Botao, H., et al.: Deescvhunter: a deep learning-based framework for smart contract vulnerability detection. In: 2021 International Joint Conference on Neural Networks (IJCNN), Shenzhen, China, pp. 1–8 (2021)
4. Yuan, Z., Zhenguang, L., Peng, Q., et al.: Smart contract vulnerability detection using graph neural networks. In: Proceedings of the Twenty-Ninth International Conference on International Joint Conferences on Artificial Intelligence, pp. 3283–3290. Yokohama (2021)
5. Zhenguang, L., Peng, Q., Wang, X., et al.: Combining graph neural networks with expert knowledge for smart contract vulnerability detection. IEEE Trans. Knowl. Data Eng. 35(2), 1296–1310 (2021)