1. Black S, Biderman S, Hallahan E, Anthony Q, Gao L, Golding L, He H, Leahy C, McDonell K, Phang J et al (2022) Gpt-neox-20b: an open-source autoregressive language model. arXiv preprint arXiv:2204.06745
2. Brown T, Mann B, Ryder N, Subbiah M, Kaplan JD, Dhariwal P, Neelakantan A, Shyam P, Sastry G, Askell A et al (2020) Language models are few-shot learners. Adv Neural Inf Process Syst 33:1877–1901
3. Chen M, Tworek J, Jun H, Yuan Q, Pinto HPDO, Kaplan J, Edwards H, Burda Y, Joseph N, Brockman G et al (2021) Evaluating large language models trained on code. arXiv preprint arXiv:2107.03374
4. Cito J, Dillig I, Murali V, Chandra S (2022) Counterfactual explanations for models of code. In: Proceedings of the 44th international conference on software engineering: software engineering in practice, pp 125–134
5. Feng Z, Guo D, Tang D, Duan N, Feng X, Gong M, Shou L, Qin B, Liu T, Jiang D et al (2020) Codebert: a pre-trained model for programming and natural languages. arXiv preprint arXiv:2002.08155