Author:
Sanjana K. ,Sowmya V.,Gopalakrishnan E. A.,Soman K. P.
Reference18 articles.
1. Andreotti, F., Carr, O., Pimentel, M.A.F., Mahdi, A., De Vos, M.: Comparing feature-based classifiers and convolutional neural networks to detect arrhythmia from short segments of ECG. Comput. Cardiol. (CinC) Rennes 2017, 1–4 (2017)
2. Datta, S., et al.: Identifying normal, AF and other abnormal ECG rhythms using a cascaded binary classifier. Comput. Cardiol. (CinC) Rennes 2017, 1–4 (2017)
3. Ganesan, A.N., et al.: Long-term outcomes of catheter ablation of atrial fibrillation: a systematic review and meta-analysis. J. Am. Heart Assoc. 2(2), e004549 (2013)
4. Go, A.S., et al.: Prevalence of diagnosed atrial fibrillation in adults: national implications for rhythm management and stroke prevention: the Anticoagulation and Risk Factors in Atrial Fibrillation (ATRIA) Study. JAMA 285(18), 2370–2375 (2001)
5. Goldberger, A.L., Amaral, L.A.N., Glass, L., Hausdorff, J.M., Ivanov, P.Ch., Mark, R.G., Mietus, J.E., Moody, G.B., Peng, C.-K., Stanley, H.E.: PhysioBank, PhysioToolkit, and PhysioNet: components of a new research resource for complex physiologic signals. Circ. 101(23), e215–e220 (2003)
Cited by
2 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献