Energy-Efficient Resource Allocation Approaches for Cloud Computing Systems: A Survey and Taxonomy
Author:
Sharma Chitra, Tiwari Pradeep KumarORCID, Agarwal Garima
Publisher
Springer Singapore
Reference22 articles.
1. Stavrinides, G.L., Karatza, H.D.: An energy-efficient, QoS-aware and cost-effective scheduling approach for real-time workflow applications in cloud computing systems utilizing DVFS and approximate computations. Future Gener. Comput. Syst. 96, 216–226 (2019) 2. Devaraj, A.F.S., Elhoseny, M., Dhanasekaran, S., Lydia, E.L., Shankar, K.: Hybridization of firefly and Improved multi-objective particle swarm optimization algorithm for energy efficient load balancing in cloud computing environments. J. Parallel Distrib. Comput. (2020) 3. Arulkumar, V., Bhalaji, N.: Performance analysis of nature inspired load balancing algorithm in cloud environment. J. Ambient Intell. Humanized Comput. 1–8 (2020) 4. Bhattacherjee, S., Das, R., Khatua, S., Roy, S.: Energy-efficient migration techniques for cloud environment: a step toward green computing. J. Supercomput. 1–29 (2019) 5. He, K., Li, Z., Deng, D., Chen, Y.: Energy-efficient framework for virtual machine consolidation in cloud data centers. China Commun. 14(10), 192–201 (2017)
|
|