Brain Tumor Classification Using Decision Tree and Neural Network Classifiers

Author:

Venkata Subbarao M.,Sudheer Kumar T.,Chowdary P. S. R.,Chakravarthy V. V. S. S. S.

Publisher

Springer Nature Singapore

Reference12 articles.

1. Louis DN, Perry A, Reifenberger G, Deimling AV, Figarella-Branger D, Cavenee WK, Ohgaki H, Wiestler OD, Kleihues P, Ellison DW (2016) The 2016 World Health Organization classification of tumors of the central nervous system: a summary. Acta Neuropathol 131:803–820

2. Sreedevi D, Samatha K, Rao MP (2020) Performance of MRI brain tumor classification using neural network classifiers. Int J Adv Res Eng Technol (IJARET) 11(9):1043–1059

3. Abd-Ellah MK, Awad AI, Khalaf AAM, Hamed HFA

4. Design and implementation of a computer-aided diagnosis system for brain tumor classification. In: Proceedings of the 28th international conference on microelectronics, pp 73–76, 2016

5. Kang J, Ullah Z, Gwak J (2021) MRI-based brain tumor classification using ensemble of deep features and machine learning classifiers. Sensors 21:2222. https://doi.org/10.3390/s21062222

Cited by 7 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Brain Tumor Classification Using MobileNet;2024 International Conference on Integrated Circuits and Communication Systems (ICICACS);2024-02-23

2. Performance Analysis of Machine Learning Techniques for Multi-Organ Cancer Detection and Classification: A Comparative Study;2023 International Conference on Emerging Research in Computational Science (ICERCS);2023-12-07

3. A hybrid multilayered classification model with VGG-19 net for retinal diseases using optical coherence tomography images;Soft Computing;2023-07-06

4. Investigations on Feature Ranking Algorithms for Date Fruit Genotype Detection;2023 8th International Conference on Communication and Electronics Systems (ICCES);2023-06-01

5. Performance Analysis of Feature Selection Algorithms in the Classification of Dry Beans using KNN and Neural Networks;2023 International Conference on Sustainable Computing and Data Communication Systems (ICSCDS);2023-03-23

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3