Author:
Kumar Ravinder,Adatia Aman,Wander Gurpreet Singh,Sahani Ashish Kumar
Publisher
Springer Nature Singapore
Reference7 articles.
1. Heo BM, Ryu KH (2018) Prediction of prehypertenison and hypertension based on anthropometry, blood parameters, and spirometry. Int J Environ Res Public Health 15(11). https://doi.org/10.3390/IJERPH15112571
2. A global brief on hypertension: silent killer, global public health crisis: World Health Day 2013. https://www.who.int/publications/i/item/a-global-brief-on-hypertension-silent-killer-global-public-health-crisis-world-health-day-2013. Accessed 15 Jun 2022
3. Ye C, Fu T, Hao S et al (2018) Prediction of incident hypertension within the next year: prospective study using statewide electronic health records and machine learning. J Med Internet Res 20(1). https://doi.org/10.2196/JMIR.9268
4. Martinez-Ríos E, Montesinos L, Alfaro-Ponce M, Pecchia L (2021) A review of machine learning in hypertension detection and blood pressure estimation based on clinical and physiological data. Biomed Signal Process Control 68:102813. https://doi.org/10.1016/J.BSPC.2021.102813
5. Koshimizu H, Kojima R, Okuno Y (2020) Future possibilities for artificial intelligence in the practical management of hypertension. Hypertens Res 43(12):1327–1337. https://doi.org/10.1038/s41440-020-0498-x