Application of Deep Autoencoders in Commerce Recommendation
Author:
Bai Gali,Zhan Zhiqiang
Publisher
Springer Singapore
Reference10 articles.
1. Cremonesi, P., Koren, Y., Turrin, R.: Performance of recommender algorithms on top-n recommendation tasks. In: Proceedings of the Fourth ACM Conference on Recommender systems, pp. 39–46. ACM (2010) 2. Herlocker, J.L., Konstan, J.A., Borchers, A., et al.: An algorithmic framework for performing collaborative filtering. In: Proceedings of the 22nd Annual International ACM SIGIR Conference on Research and Development in Information Retrieval, pp. 230–237. ACM (1999) 3. Sarwar, B., Karypis, G., Konstan, J., et al.: Item-based collaborative filtering recommendation algorithms. In: Proceedings of the 10th International Conference on World Wide Web, pp. 285–295. ACM (2001) 4. Verstrepen, K., Goethals, B.: Unifying nearest neighbors collaborative filtering. In: Proceedings of the 8th ACM Conference on Recommender Systems, pp. 177–184. ACM (2014) 5. Koren, Y., Bell, R., Volinsky, C.: Matrix factorization techniques for recommender systems. Computer 42(8) (2009)
|
|