Publisher
Springer Nature Singapore
Reference14 articles.
1. Rodriguez-Ruiz A, Lång K, Gubern-Merida A, Broeders M, Gennaro G, Clauser P, Helbich TH, Chevalier M, Tan T, Mertelmeier T, Wallis MG, Andersson I, Zackrisson S, Mann RM, Sechopoulos I (2019) Stand-alone artificial intelligence for breast cancer detection in mammography: comparison with 101 radiologists. J Natl Cancer Inst 111(9):916–922
2. Yap MH et al (2018) Automated breast ultrasound lesions detection using convolutional neural networks. IEEE J Biomed Health Inform 22(4):1218–1226
3. Ping Q, Yang CC, Marshall SA, Avis NE, Ip EH (2016) Breast cancer symptom clusters derived from social media and research study data using improved K-medoid clustering. IEEE Trans Comput Soc Syst 3(2):63–74
4. Aicha, Guessoum A (2015) Classification of SNPs for breast cancer diagnosis using neural-network-based association rules. In: 12th International symposium on programming and systems (ISPS). IEEE
5. Vosoughi Fard M, Ebrahimpour H (2015) Applying grey wolf optimizer-based decision tree classifier for cancer classification on gene expression data. In: 5th International conference on computer and knowledge engineering (ICKE), Mashhad, pp 147–151